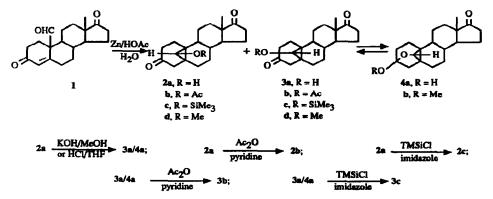
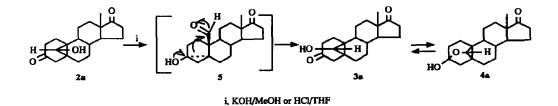


0040-4039(94)01171-0


Synthesis and Isomerization of 19-Hydroxy-56,19-cyclosteroids

John F. Templeton,* Weiyang Lin,* Yangzhi Ling* and Kirk Marat^b

^aFaculty of Pharmacy, ^bDepartment of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2


Abstract: Synthesis of 19(R/S)-hydroxy- 5β , 19-cycloandrostane-3, 17-dione by reductive cyclization of the steroid 4-en-3one 19-aldehyde with zinc in aqueous acetic acid is reported. On either acid or base treatment the R-isomer is converted to the S-isomer through an intermediate 3-hydroxy-3,5-cyclosteroid.

During our studies on the synthesis of potential steroid enzyme inhibitors we discovered a route to 19(R/S)-hydroxy-5 β ,19-cycloandrostanes. This synthesis gives access, for the first time, to C-19 oxygen substituted 5 β ,19-cyclosteroid derivatives. C-19 unsubstituted 5 β ,19-cycloandrostanes have been prepared by addition of the Simmons-Smith reagent¹ to the steroid 5(10)-double bond or by reductive elimination of a C-19 sulfonate or halogen with Li or Na/NH₃ or zinc and aqueous acetic acid in the steroid 4-en-3one.² Recently we reported the preparation of 19-mono- and di-halogeno substituted 5 β ,19cycloandrostane derivatives by addition of dichlorocarbene to 5(10)-unsaturated steroids.³ Here we report a novel synthesis and isomerization of 19(R/S)-hydroxy-5 β ,19-cycloandrostane-3,17-dione from the 4-en-3one 19-aldehyde through reductive cyclization with zinc and aqueous acetic acid (Scheme 1).

Scheme 1. Zinc/aqueous acetic acid treatment of androst-4-ene-3,17-dion-19-al

Oxidization of 19-hydroxyandrost-4-ene-3,17-dione with pyridinium dichromate gave the 19-aldehyde 1^4 which on stirring with excess zinc and aqueous acetic acid at 20°C for 1.5 h gave the R-isomer 2a (m.p. 160-167°C from CH₂Cl₂/Et₂O)⁵ as the major product (67%) and, after chromatographic separation on silica gel, the S-isomer 3a as a minor product (1.7%). The latter alcohol 3a was obtained in equilibrium with the intramolecular hemiketal 4a (m.p. 160-165°C from CH₂Cl₂/Et₂O). The 19-hydroxyl group in the S-isomer is located in a favourable position for intramolecular ring closure at C-3 to form the hemiketal 4a, a reaction not possible with the R-isomer. Acetylation (Ac₂O/pyridine/1 h/20°C) or silylation (Me₃SiCl/imidazole/2 h/20°C) of the 3a/4a mixture gave the non-crystalline acetate 3b or the silyl ether 3c (m.p. 122-125°C from Et₂O/hexane) of the S-isomer 3a, respectively. The R-isomer 2a, on similar acetylation or silylation gave the corresponding acetate 2b (m.p. 180-183°C from CH₂Cl₂/Et₂O) or silyl ether 2c (m.p. 96-98°C from Et₂O/hexane).

Scheme 2. Isomerization of the R-isomer to the S-isomer

Treatment of the R-isomer 2a with KOH/MeOH at 20 °C gave the S-isomer/hemiketal mixture 3a/4a (70%), identical (m.p., ¹H NMR) with the minor product obtained from the initial zinc and acetic acid reaction. Conversion of the R-isomer 2a to the more stable S-isomer 3a can take place through the cyclopropanol 5 formed by ring opening of 2a followed by reclosure to 3a (Scheme 2). Similar equilibrating cyclopropyl alkoxide ions have been studied in detail by Reusch and coworkers.⁶ Treatment of the R-isomer 2a with concentrated HCl/THF (0.2 M) at 20 °C also gave the S-isomer 3a/4a hemiketal mixture (40%). Isolation of the cyclopropanol methyl ethers (2d, 3d, 4b, 6) on treatment of the R-isomer 2a with concentrated HCl/MeOH (0.2 M) demonstrates that the 3 β ,5 β -cyclopropanol is formed under conditions in which the rearrangement occurs (Scheme 3). Under acidic or basic reflux conditions the cyclopropanols 2a and 3a undergo conversion to A-norandrostane derivatives consistent with the ring open products described previously.⁶

The 4-en-3-one 19-aldehyde is a vinylogous β -ketoaldehyde and reductive cyclization to the cyclopropanol is comparable to the formation of a cyclopropane-1,2-diol which has been shown to be an intermediate in the abnormal Clemmensen reduction of β -diketones.^{7,8} This stereoselective cyclization

Scheme 3. Concentrated HCI/MeOH (0.2 M) treatment of the cyclopropanol 2a

of the aldehyde 1 to the R-isomer 2a as the major product may result from the π -orbitals at C-3 to C-5 orienting the carbonyl oxygen away from ring A favouring formation of the R-isomer, or result from stereoelectronic requirements at the zinc surface. Relief of steric strain, especially from H-8 β , and hemiketal formation can account for isomerization of the R-isomer to the S-isomer.

All structures were established by ¹H and ¹³C NMR measurements.⁹ Carbon spectra were classified as to multiplicity with the DEPT technique.¹⁰ NOE and COSY measurements were carried out on compounds 2a, 2b, 3b and 6. The alcohol 2a and acetate 2b show NOE enhancement between H-19 and H-1 β , H-2 β and H-4 β whereas the acetate 3b shows NOE enhancement between H-19 and H-6 β and H-8. These NOE enhancements establish that the cyclopropyl ring is located on the steroid β -face and the stereochemistry of the C-19 substituent. The 3 β ,5 β -cyclosteroid stereochemistry of ring A in the cyclopropyl methyl ether 6 was determined by a clear NOE enhancement between H-19 and H-4 β (*endo* H) while H-4 α (*exo* H) shows an NOE enhancement with the C-3 methoxy group. Irradiation of H-19 shows a NOE enhancement with H-4 β with little NOE to the C-3 methoxy group whereas the C-3 methoxy group shows an NOE to H-4 α . Indirectly an NOE was observed between H-4 β and H-1 β upon irradiation of H-4 α (3 spin effect). Direct irradiation of H-4 β was not possible because of overlap with H-9.

19-Substituted 1β ,19-cyclosteroid derivatives have been obtained by similar treatment of androst-1ene-3,17-dion-19-al with zinc in aqueous acetic acid. The reactions of these derivatives are under investigation.

Acknowledgments

We thank the Medical Research Council of Canada for financial assistance. We are grateful for the receipt of a Park-Davis Centennial Scholarship to Weiyang Lin.

References and notes

- H. Laurent and R. Weichert Selective Introduction of Alkyl and Methylene Groups into the Steroid System. In Organic Reactions in Steroid Chemistry; Fried, J.; Edwards, J. A. Eds.; Van Nostrand Reinhold Co.: New York, 1972; Vol. 2, pp. 110-111.
- Rakhit, S.; and Gut, M. J. Am. Chem. Soc. 1964, 86, 1432-1434. Knox, L. H.; Blossey, E.; Carpio, H.; Cervantes, L.; Crabbe, P.; Verlarde, E.; Edwards J. A. J. Org. Chem. 1965, 30, 2198-2205. Santaniello, E.; Caspi, E. J. Steroid Biochem. 1976, 7, 223-227; Holland, H. L.; Diakow, P. R.; Taylor, G. J. Can. J. Chem., 1981, 59, 2809-2819.
- 3. Templeton, J. F.; Ling, Y.; Lin, W.; Pitura, J. R.; Marat, K. J. Chem. Soc. Perkin Trans. 1, in press.
- 4. Hagiwara, H.; Noguchi, S.; Nishikawa, M. Chem. Pharm. Bull. 1960, 8, 84-85.
- 5. Reactions were monitored by thin-layer chromatography on silica gel (Merck type 60II) in acetone, diethyl ether or ethyl acetate/petroleum ether (35-60°C) mixtures. Melting points were determined on a Kofler-type hot stage apparatus and are uncorrected. All new compounds (2a-d, 3a, 3c-d, 4a-b, 6) gave satisfactory elemental analysis (C,H).
- 6. Christensen, J. R.; Reusch, W. J. Org. Chem. 1983, 48, 3741-3744 and references therein.
- 7. Wenkert, E; Kariv, E. Chem. Commun., 1965, 570-571. Kariv, E.; Wenkert, E. Israel J. Chem., 1967, 5, 68.
- 8. Priddy, D. B.; Reusch, W. Tetrahedron Lett. 1969, 10, 5291-5294.
- 9. Spectra were recorded on either a Bruker AM300 or AMX500 instrument in CDCl₃ except compound 6 which was recorded in CD₃COCD₃. The residual CHCl₃ peak in the solvent (δ_C 77.0, δ_H 2.76 ppm) were used as internal reference for both carbon and proton spectra except for CD₃COCD₃ in which tetramethylsilane was used.
- 10. Doddrell, D. M.; Pegg, D. P.; Bendall, M. T. J. Magn. Reson. 1982, 48, 323.

(Received in USA 9 May 1994; revised 31 May 1994; accepted 15 June 1994)